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Abstract

We solve d-dimensional Heesch’s problem in the asymptotic sense.
Namely, we show that, if we let d → ∞, then there is no uniform
upper bound on the set of all possible finite Heesch numbers in the
space Ed; in other words, given any nonnegative integer n, we can find
a dimension d (depending on n) in which there exists a hypersolid
whose Heesch number is finite and greater than n.
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1 Introduction

Problems on tessellations (or tilings) are a very active research direction
within the branch of combinatorial geometry. Recall that a tessellation of
the Euclidean plane E2 is a set T such that each T ∈ T is a closed topological
disc, every two different T ′, T ′′ ∈ T have disjoint interiors, and

⋃
T = E2.

The elements of T are called tiles. The book by Grünbaum and Shephard [2]
is a very comprehensive treatment of the theoretical foundations of tilings,
and it is a very valuable source of information even still today.

As far as this article is concerned, all the tessellations will consist of
mutually congruent tiles (the so-called monohedral tessellations); if there
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exists a tessellation such that all the tiles are congruent to a given figure, we
shall say that such figure tessellates the plane.

Given two figures, each of which tessellates the plane, one of them can
be deemed “harder to tessellate by” than the other. The so-called isohe-
dral number of a figure is a positive integer that presents one such measure
(the larger isohedral number is, the figure is “more complex”). Answering
the second part of Hilbert’s 18th problem, in 1928 Reinhardt [8] constructed
a (three-dimensional) polyhedron whose isohedral number is 2 (which was
the first example with an isohedral number greater than 1). Grünbaum and
Shephard share the opinion [2, Section 9.6] that the Hilbert’s problem was
formulated in three dimensions because Hilbert believed that in two dimen-
sions such a figure does not exist. However, in 1935 Heesch [3] constructed
a two-dimensional example. Today it is known, as shown by Socolar [9],
that in Ed for d > 3 there exists for each k a (hyper)solid whose isohedral
number is k, but in two dimensions this is still an open problem (the current
record-holder is a figure whose isohedral number is 10, constructed by Myers
[7]).

The same Heesch introduced [4] what today is known as the Heesch num-
ber, which ranks figures that do not tessellate the plane by their ability to
“advance” toward a tessellation; the Heesch number is a nonnegative integer
such that, the larger it is, the given figure can advance “further” toward a
tessellation (if a figure tessellates the plane, it is convenient to define the
Heesch number of that figure to be infinite). Speaking somewhat informally
(a formal definition will be given later), we define the Heesch number of a
given figure T to be the maximal nonnegative integer n such that T can be
completely surrounded by congruent copies of itself n times in total. See
Figure 1 for an example: there we have a convex pentagon (that can be ob-
tained by gluing together a square, an equilateral triangle, and a 30◦-60◦-90◦

triangle) that is surrounded once. Note that there are more possible ways to
surround this figure, two of which are shown, which differ even by the number
of copies used for surrounding (though this quantity is of no significance for
the Heesch number). We would like to add that, whenever this pentagon is
shown in the literature, practically always it is shown surrounded by either
7 or 8 copies, but as can be seen here, it can also be surrounded by 6 or 9
copies. We have calculated (with a computer help) that there exist exactly
2740 possible noncogruent first coronas around this pentagon (where coronas
that differ only by a translation of a “loose” tile, such as the topmost tile in
Figure 1 left, are considered to be in the same congruence class), of which
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there are only 122 that consist of 6 copies, and even less, only 64, that consist
of 9 copies (in comparison to a total of 1234 those that consist of 7 copies
and 1320 those that consist of 8 copies). However, it can be shown that, no
matter how we surround the observed figure, the resulting shape can never
be surrounded one more time by copies of the given figure; therefore, the
Heesch number of the observed figure equals 1 (this example has been found
by Heesch himself [4]).

Figure 1: A figure surrounded once by its congruent copies (two ways are
shown).

Probably the most important open problem concerning the Heesch num-
ber (called Heesch’s problem) asks whether the set of all finite values that
can be the Heesch number of some figure is bounded from above (in other
words, whether there exists the largest possible finite Heesch number). The
current record-holder is a figure whose Heesch number is 5 (actually, a family
of figures, each of which has the Heesch number 5), constructed by Mann [5].
We also note that Heesch’s problem has been solved in the hyperbolic plane
[10], as well as in the version for sets of more figures (at least three) [1]; in
both these cases, it has been shown that there is no upper bound on the set
of all possible finite Heesch numbers.

So far, all the research on the Heesch number has been done pretty much
exclusively within the two-dimensional space (that is, the plane). Some sug-
gestions that it would be useful to study the problem in larger-dimensional
spaces appeared in [6], but remained largely unexplored in the literature.
In this article we solve d-dimensional Heesch’s problem in the asymptotic
sense. Namely, we show that, if we let d → ∞, then there is no uniform
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upper bound on the set of all possible finite Heesch numbers in the space Ed;
in other words, given any nonnegative integer n, we can find a dimension d
(depending on n) in which there exists a hypersolid whose Heesch number is
finite and greater than n.

2 The main section

Let us first formally define the necessary notions.

Definition 1. We say that a hypersolid C (a topological d-ball) in Ed can be
surrounded n times if and only if there exist finite collections C1,C2, . . . ,Cn

of isometric copies of C such that:

• every two different hypersolids from {C}∪
⋃n

i=1 Ci have disjoint interi-
ors;

• for each i, 1 6 i 6 n, each hypersolid from Ci has a common boundary
point with some hypersolid from Ci−1 (where by convention, we let
C0 = {C});

• for each i, 1 6 i 6 n,
⋃(⋃i

j=0 Cj

)
is a closed topological d-ball such

that
⋃(⋃i−1

j=0 Cj

)
is completely contained in its interior.

The collection Ci is called the ith corona.

Definition 2. The Heesch number of a given hypersolid C (a topological
d-ball) in Ed is the maximal nonnegative integer n such that C can be sur-
rounded n times. If such a maximum does not exist, then we define the
Heesch number to be infinite.

From now on, we work in a given Euclidean space Ed, where d = 2k

for some positive integer k. We shall define a hypersolid in Ed as follows.
We start from a unit hypercube, and mark some of its facets (which are
(d− 1)-dimensional unit hypercubes) by “bumps” and “nicks” (arranged in
a particular way that will be described in a moment), where each bump
matches each nick. In particular, each bump or nick can be taken to be
a right hypercone whose base is an (n − 1)-dimensional (small) hyperball
placed in the center of a facet of the considered hypercube, and whose axis
is orthogonal to the facet; we call bumps, respectively nicks, such hypercones
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erected outwards, respectively inwards (with respect to the interior of the
considered hypercube).

Definition 3. A basic hypercube is a hypersolid obtained in the described
way that has d facets with bumps and d − 1 facets with nicks (and 1 facet
not marked by either), where, additionally, all d facets with bumps intersect
at one vertex of the considered hypercube.

Figure 2: A 3-dimensional basic hypercube, and the same basic hypercube
surrounded by 26 isometric copies of itself.

Example. In Figure 2 left we give an example of a basic hypercube in three
dimensions (for the purpose of this illustration, we ignore the fact that 3 is
not of the form 2k), while on the right we show how it can be surrounded
by its 26 isometric copies (note that, therefore, the Heesch number of this
solid is at least 1). In Figure 3 we give an example of a basic hypercube
in four dimensions. We would like to emphasize that this image is not an
“artistic impression,” but it has actually been drawn by first writing all the
necessary equations in 4D, and then projecting first to 3D and then finally
to 2D; therefore, it is as realistic as possible.
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Figure 3: A 4-dimensional basic hypercube.

We first show the following lemma.

Lemma 4. The Heesch number of a basic hypercube is at most d− 1.

Proof. Suppose the contrary: a given basic hypercube can be surrounded d
times. Then the resulting configuration is a hypercube of side 2d + 1 (up to
bumps and nicks), which means that it consists of (2d+1)d basic hypercubes.
Note that the total number of bumps among all these basic hypercubes equals
d(2d+ 1)d, while the total number of nicks equals (d− 1)(2d+ 1)d. It follows
that there are at least d(2d+1)d−(d−1)(2d+1)d, that is, (2d+1)d bumps that
are not matched by any nick. All such bumps have to be on the boundary of
the considered hypercube; however, the hyperarea of that boundary (which
is the total number of those unit facets of all the basic hypercubes that are
on the boundary of the considered hypercube) equals 2d(2d+ 1)d−1, which is
less than (2d+1)d, and thus there is not enough “room” for all the considered
bumps, which is a contradiction. The lemma is thus proved. �

We are left to prove that a basic hypercube can be surrounded d−1 times
by isometric copies of itself. In fact, we shall prove more: it is possible to
stack (2d)d isometric basic hypercubes to form a hypercube (up to bumps
and nicks) of side 2d (note that a hypercube of side 2d− 1 would suffice for
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the assertion from the previous sentence). The stacking is (naturally) done
in such a way that any two basic hypercubes that share a common facet must
have the corresponding facets marked in a matching way (that is, either a
bump in one hypercube and a nick in the other one, or unmarked facets in
both hypercubes).

During the proof, we shall need to refer to various unit hypercubes marked
by bumps and nicks in different ways. (We shall onward refer to them as
marked hypercubes.) Therefore, let us introduce the necessary notation first.
We shall consider only hypercubes whose edges are parallel to the coordinate
axes. Each such hypercube with a given center will be described by a matrix

b1,0 b1,1
b2,0 b2,1

...
...

bd,0 bd,1

 (1)

with bi,j ∈ {1, 0,−1}. We interpret that matrix as follows. The ith row
describes the two facets orthogonal to the ith coordinate axis, in the order
in which they are met when traveling the axis from −∞ to ∞; bi,j = 1
means that there is a bump on the corresponding facet, bi,j = −1 means
that there is a nick on the corresponding facet, while bi,j = 0 means that the
corresponding facet is not marked by neither bump nor nick.

Notice that such a matrix represents a basic hypercube if and only if the
value 1 appears d times, the value −1 appears d − 1 times, and the value 0
appears once, and additionally, the value 1 appears exactly once in each row.

Example. Consider the basic hypercube from Figure 2 left. If the x-axis
goes from left to right, the y-axis from bottom to top, and the z-axis from
front to back, then the corresponding matrix for that hypercube is 1 0

−1 1
1 −1

 .

In a similar manner, considering the basic hypercube from Figure 3, if the
x-axis goes from left to right, the y-axis from bottom to top, and the two
more axes from front to back, the corresponding matrix for that hypercube
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is 
1 −1
1 −1
1 −1
1 0

 .

We observe that two marked unit hypercubes are isometric if and only if
the corresponding matrices can be transformed one into another by a permu-
tation of rows, or mutually swapping the two values from the same row (or
any combination of these operations); indeed, the first operation represents
a permutation of coordinate axes, while the second one represents switching
the direction of a particular axis. We also note that any two basic hypercubes
are (clearly) isometric.

Finally, we shall also need the following definition.

Definition 5. For t ∈ {1, 2, . . . , k+1} (recall that d = 2k), a sample of order
t is a marked unit hypercube whose corresponding matrix contains the value
−1 exactly 2k − 2t−1 times, all the other entries are equal to 1, and there is
no row in which both entries are equal to −1.

Note that a sample of order t is not a basic hypercube, it is only a marked
hypercube. Clearly, for a given t, any two samples of order t are isometric.

We now prove a series of lemmas showing some connections between basic
hypercubes and samples, as well as connections among different samples.
To simplify the terminology, whenever we discuss the two facets (of any
hypercube) orthogonal to a given coordinate axis, then the one that is met
first when traveling the axis from −∞ to ∞ will be called “left,” and the
other one will be called “right.”

Lemma 6. We can stack 2d basic hypercubes in such a way to obtain a
hypercube (up to bumps and nicks) of side 2 that “behaves like” a sample of
order 1 scaled by factor 2.

Here, by “behaves like” we mean the following: for each facet of the ob-
tained hypercube, all 2d−1 unit facets that compose it are marked in the same
way (that is, all bumps, all nicks, or all unmarked), and furthermore, if we
replace any such ensemble of bumps/nicks by one (centered) bump/nick, we
get precisely a sample of order 1 scaled by factor 2. (In effect, the obtained
structure can be thought of as a sample of order 1 where bumps/nicks have a
geometrically different shape—2d−1 hypercones instead of one—but still each
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bump matches each nick, and the structure is practically equivalent to a sam-
ple of order 1 in every meaningful manner.)

Proof. We shall arrange 2d basic hypercubes in such a way that their centers
are at the coordinates {0, 1}d. (By “center” of a basic hypercube we mean
the center of the underlying unit hypercube—not the geometrical centroid,
which would be slightly off because of the attached hypercones.) The matrix
(1) that describes the basic hypercube whose center is at (c1, c2, . . . , cd) has
bi,0 = 1 and bi,1 = −1 for all i > 2, and{

b1,0 = 1 and b1,1 = 0, if c1 = 0;
b1,0 = 0 and b1,1 = 1, if c1 = 1.

Let us first show that every two neighboring of these basic hypercubes
have the common facet marked in a matching way. And indeed, the basic
hypercubes centered at (c1, c2, . . . , cd) and (c′1, c

′
2, . . . , c

′
d) are neighbors if and

only if for some i we have ci = 0 and c′i = 1 (or vice versa), and cj = c′j
for each j, j 6= i. If their corresponding matrices are B and B′, we need
to check whether bi,1 = −b′i,0. And indeed, by our construction we have
bi,1 = −1 = −b′i,0 whenever i > 2, while for i = 1 we have b1,1 = 0 and
b′1,0 = 0 (since c1 = 0 and c′1 = 1), in both cases as needed.

We are left to show that the obtained hypercube behaves like a sample
of order 1. Consider the two facets of the obtained hypercube orthogonal to
the ith coordinate axis. The left one is composed of 2d−1 left facets (with
respect to the same axis) of all the basic hypercubes whose center has 0 at
the ith coordinate; by our construction, each of them is marked by a bump.
In a similar way, we see that the right facet is composed of 2d−1 facets each
of which is marked by a nick, with an exception of the case i = 1, when each
of them is marked by a bump.

Altogether, there are 2d−1 − 1 facets of the obtained hypercube marked
(solely) by nicks, and all the other facets are marked (solely) by bumps; fur-
thermore, there is no i such that both facets orthogonal to the ith coordinate
axis are marked by nicks (since all the facets marked by nicks are right ones).
Therefore, the obtained hypercube behaves like a sample of order 1 (scaled
by factor 2), which was to be proved. �

Lemma 7. Let t ∈ {1, 2, . . . , k + 1}. Assume that a marked unit hypercube
has center at (c1, c2, . . . , cd) with ci ∈ {0, 1}, and is represented by a d × 2
matrix B given by:
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• bi,ci = 1 and bi,1−ci = (−1)i+
∑d

u=1 cu for 1 6 i 6 2t;

• bi,0 = 1 and bi,1 = −1 for 2t < i 6 2k.

Then the considered marked hypercube is a sample of order t.

Proof. Clearly, the only values in B are 1 and −1, and there is no row in
B in which both entries are equal to −1. Therefore, we are left to prove
that −1 appears exactly 2k − 2t−1 times in B. Since

∑d
u=1 cu is constant, we

have that, for 1 6 i 6 2t, exactly half of the values (−1)i+
∑d

u=1 cu equal −1.
Therefore, −1 appears exactly 2t−1 times within the first 2t rows. Further,
each of the next 2k−2t rows contains the value −1 exactly once. That makes
a total of 2t−1 + 2k − 2t, that is, 2k − 2t−1 times the value −1 appears in B,
which was to be proved. �

Lemma 8. Let t ∈ {1, 2, . . . , k}. We can stack 2d samples of order t in such
a way to obtain a hypercube (up to bumps and nicks) of side 2 that behaves
like a sample of order t + 1 scaled by factor 2.

Proof. We shall arrange 2d samples of order t in such a way that their centers
are at the coordinates {0, 1}d. The sample centered at (c1, c2, . . . , cd) will be
precisely the one defined in the formulation of Lemma 7.

Let us first show that any two neighboring samples match. Say that
they are centered at (c1, c2, . . . , cd) and (c′1, c

′
2, . . . , c

′
d), and represented by

matrices B and B′. Let i be the (only) coordinate such that (w.l.o.g.) ci = 0
and c′i = 1. We then have to show that bi,1 and b′i,0 have opposite signs. If
2t < i 6 2k, we immediately have bi,1 = −1 = −b′i,0. Assume now 1 6 i 6 2t.

We then have bi,1 = bi,1−ci = (−1)i+
∑d

u=1 cu and b′i,0 = b′i,1−c′i
= (−1)i+

∑d
u=1 c

′
u ,

but since
∑d

u=1 c
′
u =

∑d
u=1 cu + 1 (because all the corresponding summands

are equal, with the exception of ci = 0 and c′i = 1), the two expressions
clearly have opposite signs, as needed.

Let us now show that the obtained hypercube behaves like a sample of
order t + 1. Consider the two facets of the obtained hypercube orthogonal
to the ith coordinate axis. The left one is composed of 2d−1 left facets (with
respect to the same axis) of all the basic hypercubes whose center has 0 at
the ith coordinate; by our construction, each of them is marked by a bump
(since bi,0 = 1 whenever the center of the considered hypercube has 0 at the
ith coordinate). Consider now the right facet. It is composed of 2d−1 facets,
and if 2t < i 6 2k, then each of them is marked by a nick, while if 1 6 i 6 2t,
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then each of them is marked by a bump (since for 1 6 i 6 2t we have bi,1 = 1
whenever the center of the considered hypercube has 1 at the ith coordinate).

Altogether, there are 2k − 2t facets of the obtained hypercube marked
(solely) by nicks, and all the other facets are marked (solely) by bumps; fur-
thermore, there is no i such that both facets orthogonal to the ith coordinate
axis are marked by nicks (since all the facets marked by nicks are right ones).
Therefore, the obtained hypercube behaves like a sample of order t+1 (scaled
by factor 2), which was to be proved. �

We are now ready for the main result.

Theorem 9. The Heesch number of a basic hypercube in d dimensions, where
d = 2k, equals d− 1.

Proof. By Lemma 4, d − 1 is the upper bound. For the other direction, as
we have already mentioned, we shall prove more: that it is possible to stack
(2d)d basic hypercubes to form a hypercube (up to bumps and nicks) of side
2d.

By Lemma 6, we can stack 2d basic hypercubes in such a way to obtain
a hypercube that behaves like a sample of order 1 scaled by factor 2. By
Lemma 8 for t = 1, we can stack 2d such samples in such a way to obtain a
hypercube that behaves like a sample of order 2 scaled by factor 4 (since the
initial hypercubes were already scaled by factor 2). By Lemma 8 for t = 2, we
can further stack 2d such samples in such a way to obtain a hypercube that
behaves like a sample of order 3 scaled by factor 8. Iterating the procedure,
after the last step (for t = k) we obtain a hypercube that behaves like a
sample of order k+1 scaled by factor 2k+1. In other words, at the end we get
a hypercube (up to bumps and nicks) of side 2k+1 (which is 2d), composed
of basic hypercubes, which was to be proved. �

Note. From the procedure in the above proof it is clear why the constraint
d = 2k is necessary. Namely, the matrix corresponding to a basic hypercube
has no rows with two 1’s; the matrix corresponding to a sample of order 1
has exactly one row with two 1’s, and in general, the matrix corresponding
to a sample of order t has exactly 2t−1 rows with two 1’s. Therefore, after
each step in the above proof in which we apply Lemma 8, the number of rows
with two 1’s doubles, which implies that, if we want to reach the bound from
Lemma 4, the dimension (which is the number of rows) has to be a power of
2 (at least for the presented construction).
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An open question remains whether our basic hypercubes in other dimen-
sions d (not of the form 2k) also have Heesch number equal to d − 1, or (if
not) whether a different hypersolid can be constructed that reaches this (or
greater) value.
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